Statistics

Why study Statistics?

- Statistics is the science of collecting, analyzing and making inference from data.
- Statistical methods and analyses are often used to communicate research findings and to support hypotheses and give credibility to research methodology and conclusions.

Types of Statistics

O Descriptive Statistics

A <u>simple</u> quantitative summary of a data set that has been collected.

Mean (), Median (Me), Mode (Mo),
 Standard Deviation (S.D.), Variance (s²),
 Maximum, Minimum, frequency, proportion,
 Spearman Rank Correlation (ordinal),
 Pearson Correlation (interval/ratio), and etc.

Types of Statistics

Inferential Statistics

A study to apply the conclusions that have been obtained from one study to more general populations.

Types of Statistics

	Statistics	Population
Mean	X	μ
Standard Deviation	S.D.	σ
Variance	S ²	σ^2

Basic Research in Accounting (Week 9)

Statistical Tests

O Parametric Tests

Assuming that the data has come from a type of probability distribution and making inferences about the parameters of the distribution (<u>Ex.</u> Prerequisites: Normality, Homoscedasticity of variance)

Statistical Tests

Non-Parametric Test

The tests do not require any specific form for the distribution of population.

The tests do not make inferences about the parameters of the distribution

Statistical tests

- Parametric Tests
 - Chi-square (χ^2) test
 - 🗸 t-test
 - ✓ ANOVA, ANCOVA, MANOVA
 - Regression
 - Cluster Analysis
 - Discriminant Analysis
 - Logistic Regression Analysis
 etc.
- **Non-Parametric Tests** Fisher's exact test ✓ Man-Whitney U test ✓ Wilcoxon's rank sum test Kruskall-Wallis H test Wilcoxon's signed rank test Friedman's ANOVA etc.

1) Compare Means

Analysis Type	Parametric	Non-Parametric
Compare means between two distinct/independent groups	T-test (interval/ratio)	Wilcoxon rank-sum test
Compare two quantitative measurements taken from the same individual	Paired t-test (interval/ratio)	Wilcoxon signed-rank test

1) Compare Means

Analysis Type	Parametric	Non-Parametric
Compare means between three or more distinct/independent groups	ANOVA ANCOVA MANOVA (dependent v. = interval/ratio Independent v. = at least 1 nominal)	Kruskal-Wallis test
Estimate the degree of association between two quantitative variables	Pearson correlation (interval/ratio)	Spearman's rank correlation

2) Explanation/Prediction of Relationships

Scale of Dependent variable	Scale of Independent variable	Test Statistics
Nominal	Nominal	Chi-square test
Interval/Ratio	All	Simple Regression Multiple Regression
Dichtomous	All	Probit/Logit
Polytomous	All	Logistic

3) Structure Analysis of Variables

Scale of Variables	Test Statistics
All	 ✓Cluster Analysis ✓Component Analysis ✓Exploratory Factor Analysis ✓Confirmatory Factor Analysis

T-test

Compare means between two groups

• H_{o} : $\mu_{1} = \mu_{2}$ H_{A} : $\mu_{1} \neq \mu_{2}$

ANOVA

Compare means among many groups (> 2 groups)

• Assumptions: $e_{ii} \sim N$ (0, σ^2), random sampling

• $H_{o}: \mu_{1} = \mu_{2} = \mu_{i},$ $H_{A}: \mu_{1} \neq \mu_{2} \neq \mu_{i}$

THE LOGIC OF ANOVA (ANALYSIS OF VARIANCE) $F = \frac{\text{variance of the group means}}{\text{mean of the within-group variances}}$ $F^* = \frac{\text{MSTR}}{\text{MSE}}$ where $\text{MSTR} = \frac{\text{SSTR}}{I-1}, I = \text{number of treatments}$ and $\text{MSE} = \frac{\text{SSE}}{n_T - I}, n_T = \text{total number of cases}$

Regression Analysis

- Test causal relationship
- Assumptions: 1) Linearity 2) No perfect/high multicollinearity 3) No autocorrelation 4) $e_{ii} \sim N (0, \sigma^2) 5$) no outlier
- Equation: Simple regression: Y = a + bx + eMultiple regression: $Y = a + b_1x_1 + b_ix_i + e$

Regression Analysis

Basic Research in Accounting (Week 9)