
Experimental Research

Meaning

• The experimental method is "a systematic and scientific approach to research in which the researcher manipulates one or more independent variables and controls and measures any chance in other variables.

Example

Level of Graph
Distortation

Perception of Firm
Performance

5% distortion

10% distortation

20% distortation

30% distortation

40% distortation

50% distortation

Code 1 when X>Y

Code 2 when X=Y

Code 3 when X<Y

Manipulation

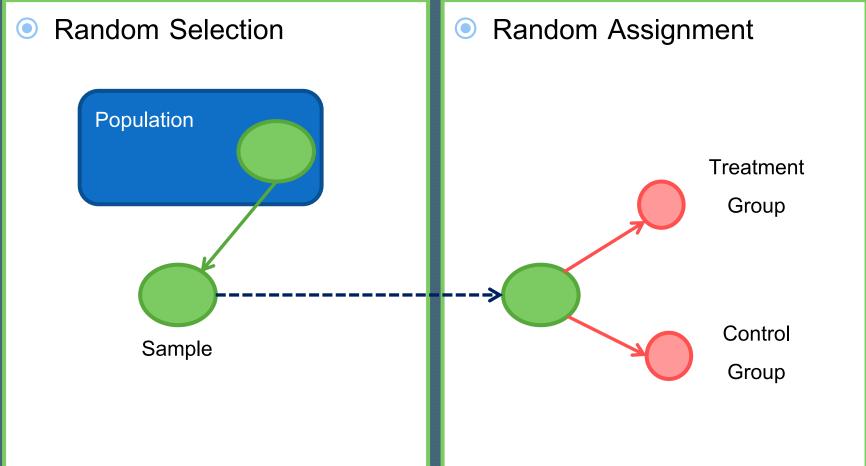
Note: Beattie V. and Jones J. M. (2002). Measurement distortation of graphs in corporate reports: an experimental study

A Range of Definitions

- True Experiment
 - Random Selection + Random Assignment (Strict definition → Sciences)
- Quasi-Experiment
 - Random Assignment (Wide definition > Social Sciences)

Definitions

Random Selection


Selecting samples from population <u>randomly</u> using sampling techniques such as simple random sampling, stratified sampling, cluster sampling etc.

Random Assignment

Assigning participants to treatment group and control group randomly

Definitions

Strength and Weakness

- Strength
 - Strong Internal Validity (with strong research design, can eliminate confounding variables quite efficiently)
- Weakness
 - Sacrifice External Validity (cannot generalize the results)

Strength and Weakness

Induction

(Generalization)

External Validity

Test of

Predictions

Internal Validity

Theories

Deduction

4-

Observation

Predictions

How to eliminate the effects of Confounding variables

Cause

(Independent Variable)

Effect

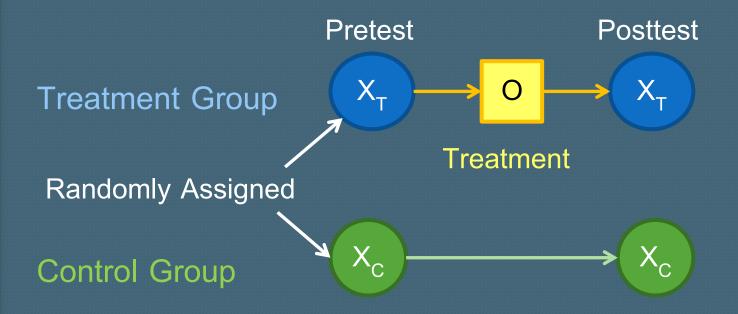
(Dependent Variable)

Confounding

Variables

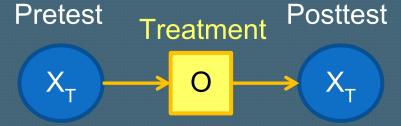
How to eliminate the effects of Confounding variables

- Occupied Control Group
 - A group that receives no treatment over the same period of time but undergoes exactly the same tests
- Random Assignment
 - Assign participants into Treatment group and Control group randomly
- Matched-Pairs
 - Match every subject in one group with an equivalent in another

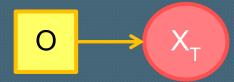

Typical Designs in Experimental Research

- Pretest-Post test Design with Control Group
- Solomon Four-Group Design
- Matched Subjects Design
- Between-Subjects Design
- Within-Subjects Design (Repeated Measures Design)

Pretest-Posttest Design with Control Group



Solomon Four-Group Design

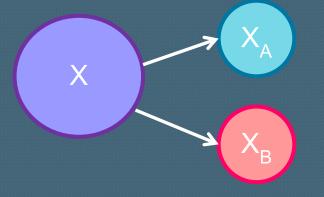

Treatment Group,

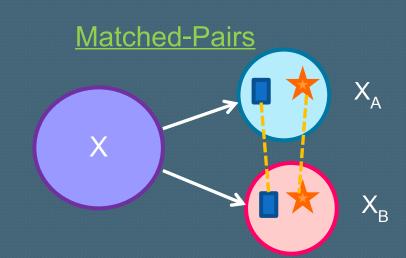
Control Group,

Treatment Group,

Control Group,

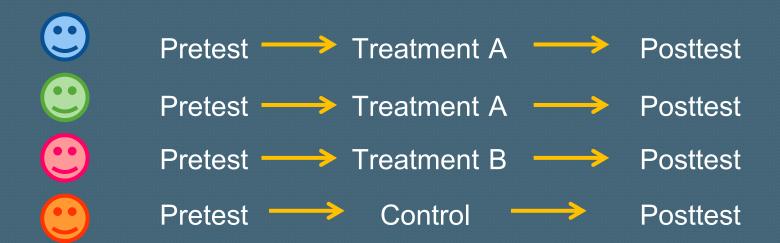
Posttest


Note: All participants are randomly Assigned.


Matched Subjects Design

Concept: Using separate experimental groups for each particular treatment, but relies upon matching every subject in one group with an equivalent in another.

Random Assignment



Between-Subjects Design

- The most common in experimental research
- Concept: Participants can be part of the treatment group or the control group, but cannot be part of both.

Between-Subjects Design

- Advantage: Very little contamination by extraneous factors
- Disadvantage: 1) Need a large number of participants
 - 2) Individual variability
 - 3) Assignment Bias

Within-Subjects Design

Concept: Every single participant is subjected to every single treatment.

Pretest → Treatment A → Treatment B → Posttest
 Pretest → Treatment A → Treatment B → Posttest
 Pretest → Treatment A → Treatment B → Posttest

1st TEST

2nd TEST

Within-Subjects Design

- * Advantage: 1) Require fewer participants
 - 2) Reduce the chance of variation between individuals
- Disadvantage: 1) Carryover Effect

(First test adversely influences the other.)

- 2) Order Effect (A \rightarrow B, B \rightarrow A)
- 3) Dropout Rate

Pilot Study

- Objective: To ensure that the experiment measures what it should and that everything is set up right.
- Solution: After getting information about errors and problems, "improve the design" before running the real experiment

